Publications

Journal papers

Potential machine learning (ML)-enhanced gas-phase transmission electron microscopy (GP-TEM) workflows in data denoising and analysis, for example: To retrieve structural changes in irregularly shaped Pt nanoparticles under CO atmosphere at room temperature with dose rate r of 1500 e/Å2/s with unsupervised deep video denoiser denoising. To identify the surface dynamics of gold atoms on gold nanoparticles, influenced by the gas atmosphere.

Joerg R. Jinschek, Stig Helveg, Lawrence F. Allard, Jennifer A. Dionne, Yuanyuan Zhu, Peter A. Crozier(2024) “Quantitative gas-phase transmission electron microscopy: Where are we now and what comes next?” MRS Bulletin. DOI: https://doi.org/10.1557/s43577-023-00648-8

The EELS intensity maps associated with the bulk photonic modes of the cube. The white dotted box indicates the cube. The dark intensity in the cube is due to strong spectral attenuation by elastic scattering. The peak intensity is represented by the brightness. Brightness and contrast of the four images are adjusted independently to highlight the spatial variation of each mode.

Yifan Wang, Shize Yang, Peter A. Crozier (2023)
Spectroscopic Observation and Modeling of Photonic Modes in CeO2 Nanostructures“. Microscopy and Microanalysis. DOI: https://doi.org/10.1093/micmic/ozad059

Denoising real-world electron-microscopy data. Example noisy images (top) from the moderate-SNR (left 2 columns) and low-SNR (right 2 columns) test sets described in Section 7. The data are denoised using a Gaussian-smoothing baseline and several unsupervised CNNs: Noise2Self, BlindSpot, and Neighbor2Neighbor. The uPSNR of each method on each test set is shown below the images. The uPSNR values and visual inspection indicate that the CNNs clearly outperform the baseline method, that the best unsupervised approach is Neighbor2Neighbor, and that all methods achieve worse results on the low-SNR test set.

Adria Marcos Morales, Matan Leibovich, Sreyas Mohan, Joshua Lawrence Vincent, Piyush Haluai, Mai Tan, Peter Crozier, Carlos Fernandez-Granda (2023)
Evaluating Unsupervised Denoising Requires Unsupervised Metrics“. Proceedings of the 40th International Conference on Machine Learning.
DOI: https://openreview.net/pdf?id=iEPLOBHHnh

Illustration of the allgorithm applied to a cerium oxide nanoparticle. Persistence in colorbar measured as proportion of longest barcode

Andrew M. Thomas, Peter A. Crozier, Yuchen Wu, David S. Matteson (2023)
Feature Detection and Hypothesis Testing for Extremely Noisy Nanoparticle Images using Topological Data Analysis“. Technometrics.
DOI: https://doi.org/10.1080/00401706.2023.2203744

Anatase particles at 150 °C without/with (condition A) 1 Torr water vapor: (a) no water, (b) 1 h
water, (c) 7 h water, (d) 20 h water, (e) 40 h water, (f) fresh area after 40 h in water vapor but not exposed
to electron beam before. Each image was taken in 20 s, including adjusting the focus

Shima Kadkhodazadeh, Filippo C. Cavalca, Ben J. Miller, Liuxian Zhang, Jakob B. Wagner, Peter A. Crozier, Thomas W Hansen (2022)
In Situ TEM under Optical Excitation for Catalysis Research“.
Topics in Current Chemistry. DOI: https://doi.org/10.1109/TCI.2022.3176536

Simulation-based denoising framework. (Top) A training dataset is generated by simulating TEM images of different structures at varying imaging conditions. Here we focus on structures of Pt nanoparticles supported on CeO2. (Middle) A CNN is trained using the simulated images, paired with noisy counterparts obtained by simulating the relevant noise process. (Bottom) The trained CNN is applied to real data to yield a denoised image. After analyzing the image to extract structures of interest, a likelihood map is generated to quantify the agreement between this structure and the noisy data.

Sreyas Mohan, Ramon Manzorro, Joshua L. Vincent, Binh Tang, Dev Y. Sheth, Eero P. Simoncelli, David S. Matteson, Peter A. Crozier, Carlos Fernandez-Granda (2022)
Deep Denoising for Scientific Discovery: A Case Study in Electron Microscopy“.
IEEE Transactions on Computational Imaging.
DOI: https://doi.org/10.1109/TCI.2022.3176536

(a) The snapshot of NSP AIMD simulation of the ceria-supported Pt19 single layer with 12 CO molecules at 0, 9 and 14 ps. (b) The snap shot of SP AIMD simulation of the ceria-supported Pt19 single layer with 12 CO molecules at 0, 2 and 3.4 ps. The red box shows that the CO and surface O bind to form CO2. (c) Left panel: calculated distance between the average z coordinates of surface Ce atoms and the average z coordinates of Pt atoms, right panel: standard deviation of z coordinates of Pt atoms. (d) Schematic diagram of lattice dynamic in SP and NSP systems. (e) Atomic resolution transmission electron microscope images of fluxional Pt nanoparticle on CeO2-(100) surface in a CO atmosphere (7 × 10−4 Torr) at room temperature. Pt columns are visible as white dots whereas (100) Miller planes in CeO2 appear as white horizontal lines. The two images are from the same nanoparticle with right-hand image recorded 0.5 s after the left-hand image.

Byungkyun Kang, Joshua L Vincent, Yongbin Lee, Liqin Ke, Peter A Crozier and Qiang Zhu (2022)
Modeling surface spin polarization on ceria-supported Pt nanoparticles“.
Journal of Physics: Condensed Matter. DOI: https://doi.org/10.1088/1361-648X/ac62a3

General scheme on how the coordinates and the intensity ˆI of atomic columns are calculated starting from the blob detection algorithm output. The five steps followed on the procedure are further explain with details in the methodological section “Tailored adjustments for our specific experimental dataset”. Images on Steps 2, 3, and 5 show a simulated atomic column in TEM mode.

Ramon Manzorro, Yuchen Xu, Joshua L. Vincent, Roberto Rivera, David S. Matteson, and Peter A. Crozier (2022)
Exploring Blob Detection to Determine Atomic Column Positions and Intensities in Time-Resolved TEM Images with Ultra-Low-Signal-to-Noise“.
Microscopy and Microanalysis. DOI: https://doi.org/10.1017/S1431927622000356

Structure: Regions of the core−shell particle containing Ni (yellow), NiO (blue), and Ni(OH)2 (pink) as identified using inverse FFTs of the individual diffraction spot pair, Activity: Time-resolved photocatalytic water splitting performance of (CrOx-modified) Ni/NiOx-Mg:SrTiO3 composites using 365 nm LED illumination, Stability: Hydrogen and oxygen yields of Ni/NiOx-SrTiO3 and Ni/NiOx- Mg:SrTiO3 in the absence and presence of CrOx

Kai Han, Diane M. Haiber, Julius Knöppel, Caroline Lievens, Serhiy Cherevko, Peter Crozier, Guido Mul,* and Bastian Me (2021)
CrOx-Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO3 in Photocatalytic Water Splitting“.
ACS Catalysis. DOI: https://doi.org/10.1021/acscatal.1c03104

Operando TEM images showing dynamic structural evolution of the Pt/CeO2 catalyst at varying levels of activity for CO oxidation. a 12.5 s time- averaged image acquired at 144 °C, where the turnover frequency (TOF) was measured to be 0 CO site−1 sec−1. b 12.5 s time-averaged image acquired at 275 °C, corresponding to a TOF of 0.80 CO site−1 sec−1. c 12.5 s time-averaged image acquired at 285 °C, corresponding to a TOF of 1.05 CO site−1 sec−1. The corresponding temperatures and CO conversions are stated in the respective figures.

Joshua L. Vincent , Peter A. Crozier (2021).
Atomic level fluxional behaviour and activity of CeO2-supported Pt catalysts for CO oxidation“.
Nature Communications. DOI: https://rdcu.be/cyLjC

Likelihood analysis to quantify the agreement between noisy data and network-denoised output

Joshua L. Vincent , Ramon Manzorro, Sreyas Mohan, Binh Tang, Dev Y. Sheth, Eero P. Simoncelli, David S. Matteson, Carlos Fernandez-Granda and Peter A. Crozier (2021).
Developing and Evaluating Deep Neural Network-Based Denoising
for Nanoparticle TEM Images with Ultra-Low Signal-to-Noise
“.
Microscopy and Microanalysis. DOI: 10.1017/S1431927621012678

Background-subtracted vibrational spectra and corresponding Gaussian peak fitting employed with (aα = 10 mrad and β = 10 mrad, (bα = 10 mrad and β = 40 mrad, (cα = 33 mrad and β = 10 mrad, and (dα = 33 mrad and β = 40 mrad.

Kartik Venkatraman, Peter A. Crozier (2021).
Role of Convergence and Collection Angles in the Excitation of Long- and Short-Wavelength Phonons with Vibrational Electron Energy-Loss Spectroscopy“.
Microscopy and Microanalysis. DOI: https://doi.org/10.1017/S1431927621012034

Comsol calculation of the polarization (shades of yellow and red) around a narrow beam of 60 keV electrons (thin vertical lines) transmitted through a 40 nm slab of SiO2. The horizontal and vertical scales are equa

Ray F. Egerton, Kartik Venkatraman, Katia March, Peter A. Crozier (2021).
Properties of Dipole-Mode Vibrational Energy Losses Recorded From a TEM Specimen“.
Microscopy and Microanalysis. DOI: https://doi.org/10.1017/S1431927620024423

Yuanyuan Li, Matthew Kottwitz, Joshua L. Vincent, Michael J. Enright, Zongyuan Liu, Lihua Zhang, Jiahao Huang, Sanjaya D. Senanayake, Wei-Chang D. Yang, Peter A. Crozier, Ralph G. Nuzzo & Anatoly I. Frenkel (2021).
“Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction”, Nature Communications.
DOI: https://doi-org.ezproxy1.lib.asu.edu/10.1038/s41467-021-21132-4

Ethan L. Lawrence, Barnaby D. A. Levin, Tara Boland, Shery L. Y. Chang, ad Peter A. Crozier (2021).
“Atomic Scale Characterization of Fluxional Cation Behavior on Nanoparticle Surfaces: Probing Oxygen Vacancy Creation/Annihilation at Surface Sites”, ACS NANO.
DOI: https://dx.doi.org/10.1021/acsnano.0c07584

Tara M. Boland, Peter Rez, Peter A. Crozier, Arunima K. Singh (2021).
“Impact of Aliovalent Alkaline-Earth metal solutes on Ceria Grain Boundaries: A density functional theory study”, Acta Materialia.
DOI: https://doi.org/10.1016/j.actamat.2020.11.023

Benjamin K. Miller, Peter A. Crozier (2021).
“Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation”, ACS Catalysis.
DOI: https://dx.doi.org/10.1021/acscatal.0c03789

Xiaorui Tong, William J. Bowman, Alejandro Mejia-Giraldo, Peter A. Crozier, and David S. Mebane (2021).
“New Data-Driven Interacting-Defect Model Describing Nanoscopic Grain Boundary Compositions in Ceramics”, Journal of Physical Chemistry C.
DOI: https://doi.org/10.1021/acs.jpcc.0c05713

Diane M. Haiber, Barnaby D. A. Levin, Michael M. J. Treacy, Peter A. Crozier(2020).
“In-Plane Structural Fluctuations in Differently Condensed Graphitic Carbon Nitrides”, Chemistry of Materials.
DOI: https://doi.org/10.1021/acs.chemmater.0c03343

Joshua L. Vincent, Jarod W. Vance, Jayse T. Langdon, Benjamin K. Miller, Peter A. Crozier (2020).
“Chemical kinetics for operando electron microscopy of catalysts: 3D modeling of gas and temperature distributions during catalytic reactions”, Ultramicroscopy.
DOI: https://doi.org/10.1016/j.ultramic.2020.113080

Barnaby DA Levin, Ethan L Lawrence, Peter A Crozier (2020).
“Tracking the picoscale spatial motion of atomic columns during dynamic structural change”, Ultramicroscopy.
DOI: https://doi.org/10.1016/j.ultramic.2020.112978

Barnaby DA Levin, Diane Haiber, Qianlang Liu, Peter A Crozier (2020).
“An Open-Cell Environmental Transmission Electron Microscopy Technique for In Situ Characterization of Samples in Aqueous Liquid Solutions”, Microscopy and Microanalysis.
DOI: 10.1017/S1431927619015320

Ethan L Lawrence, Barnaby DA Levin, Benjamin K Miller, Peter A Crozier (2020).
“Approaches to Exploring Spatio-Temporal Surface Dynamics in Nanoparticles with In Situ Transmission Electron Microscopy”, Microscopy and Microanalysis.
DOI: 10.1017/S1431927619015228

K. Venkatraman, B.D.A. Levin, K. March, P. Rez and P.A. Crozier (2019).
“Vibrational spectroscopy at atomic resolution with electron impact scattering”, Nature Physics.
DOI: 10.1038/s41567-019-0675-5.

W. J. Bowman, A. Darbal, and P.A. Crozier (2019)
“Linking macroscopic and nanoscopic ionic conductivity: A new paradigm for characterizing conductivity in polycrystalline ceramics ”, ACS Appl. Mater. Interfaces.
DOI: https://doi-org.ezproxy1.lib.asu.edu/10.1021/acsami.9b15933

L. Zhang, Q. Liu and P.A. Crozier (2019)
“Light induced coarsening of metal nanoparticles”, Journal of Materials Chemistry A.
DOI: 10.1039/C8TA11341F

Q. Liu, S C. Quillin, D. J. Masiello, P. A. Crozier (2019)
“Nanoscale probing of resonant photonic modes in dielectric nanoparticles with focused electron beams”, Physical Review B – Condensed Matter and Materials Physics
DOI: https://doi-org.ezproxy1.lib.asu.edu/10.1103/PhysRevB.99.165102

D.M. Haiber and P.A. Crozier (2018) “Nanoscale Probing of Local Hydrogen Heterogeneity in Disordered Carbon Nitrides with Vibrational Electron Energy-Loss Spectroscopy”, ACS Nano, 12(6): 5463-5472. DOI: 10.1021/acsnano.8b00884.

K. Venkatraman, P. Rez, K. March, P.A. Crozier* (2018). “The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2” Microscopy, 67(1): 14 -23. DOI 10.1093/jmicro/dfy003.

E. L. Lawrence and P.A. Crozier* (2018). “Oxygen Transfer at Metal-Reducible Oxide Interfaces: Contrasting Carbon Growth from Ethane and Ethylene on Supported Ni Nanoparticles”. ACS Applied Nano Materials, 2018. 1(3): p. 1360-1369.

W. J., Bowman, M. Kelly, G. Rohrer, C. A. Hernandez, P.A. Crozier* (2017). “Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration” Nanoscale, 167: 5-10. DOI 10.1039/C7NR06941C.

P.A. Crozier, (2017) “Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces”, Ultramicroscopy 180 104-114.

Q. Cheng, M.K. Benipal, Q. Liu, X. Wang, P.A. Crozier, C. Chan, and R. Nemanich, (2017). “Al2O3 and SiO2 Atomic-Layer Deposition Layers on ZnO Photoanodes and Degradation Mechanisms”, ACS Applied Materials and Interfaces 9(19) 16138-16147.

Q. Liu, K. March, and P.A. Crozier* (2017). “Nanoscale Probing of Bandgap States on Oxide Particles Using Electron Energy-Loss Spectroscopy”, Ultramicroscopy 178 2-11.

M.L. Taheri, E. A. Stach, I. Arslan, P.A. Crozier, B. C. Kabius, T. LaGrange, A. M. Minor, S. Takeda, M. Tanase, J. B Wagner, Renu Sharma* (2016). “Current status and future directions for in situ transmission electron microscopy”, Ultramicroscopy 170 86-95

M. Kaur, Q. LiuP.A. Crozier, R.J. Nemanich (2016). “Photochemical reaction patterns on heterostructures of ZnO on periodically poled lithium niobate”, ACS Applied Materials & Interfaces 8 (39), 26365-26373.

J. Sheth, D. Chen, J.J. Kim, W.J. BowmanP.A Crozier, H.L. Tuller, S.T. Misture, S. Zdzieszynski, B.W. Sheldon, S.R. Bishop (2016). “Coupling of strain, stress, and oxygen non-stoichiometry in thin film Pr0.1Ce0.9O2−δ”, Nanoscale 8 16499 – 16510

P.A. Crozier*, T. Aoki and Q. Liu (2016). “Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy” Ultramicroscopy, 169: 30-36.

W.J. Bowman, K. March, C. A. HernandezP.A. Crozier* (2016). “Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium–ceria case” Ultramicroscopy, 167: 5-10.

F. Tao and P. A. Crozier* (2016). “Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis”, Chemical Reviews, 116(6):  3487-3539.

B. K. Miller, T. Barker and P. A. Crozier* (2015). “Novel Sample Preparation for Operando TEM of Catalysts”, Ultramicroscopy 156: 18-22.

L. Zhang, Q. Liu, T. Aoki, and P.A. Crozier* (2015). “Photocorrosion of Ni/NiO Core/Shell Structures on TiO2 for Water Splitting”, J. Phys. Chem. C, 119: 7207-7214.

Q. LiuL. Zhang, and P.A. Crozier* (2015). “Structure-reactivity relationships of Ni-NiO core-shell co-catalysts on Ta2O5 for solar hydrogen production”, Applied Catalysis B: Environmental, 172, 58-64.

P.A. Crozier* and T.W. Hansen (2015). “In situ and operando transmission electron microscopy of catalytic materials”, MRS Bulletin, 40, 38-45.

W.J. Bowman, J. Zhu, R. Sharma, and P.A. Crozier* (2015). “Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria”, Solid State Ionics, 272: p. 9-17.

X. Q. Li, Q. Chen, I. McCue, J. Snyder, P.A. Crozier, J. Erlebacher, K. Sieradzki (2014). “Dealloying of Noble-Metal Alloy Nanoparticles”. Nano Letters 14(5), 2569-2577.

O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter,  P. Rez, E. Soignard, J. Zhu, P.E. Batson, M.J. Lagos, R. F. Egerton, and P.A., Crozier* (2014). “Vibrational spectroscopy in the electron microscope”. Nature  514, 209-212.

B. K. Miller and P. A. Crozier*, (2014). “Analysis of Catalytic Gas Products Using Electron Energy-Loss Spectroscopy and Residual Gas Analysis for Operando Transmission Electron Microscopy”. Microscopy and Microanalysis 20, 815–824.

J. Zhu, P. A. Crozier* and J. Anderson, (2014). “Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy” Microscopy and Microanalysis, 20, 748-759.

J. Zhu, P. A. Crozier* and J. Anderson, (2013). “Characterization of light-absorbing carbon particles at three altitudes in East Asian outflow by transmission electron microscopy” Atmospheric Chemistry and Physics Discussions 13, 6359-6371.

T. Na, J. Liu, S. ChennaP. A. Crozier, Y. Li, A. Chen and W. Shen (2012). “Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring” Journal of American Chemical Society, 134, 20585−20588.

L. Zhang*, B. K. Miller* and P. A. Crozier* (2013). “Atomic Level Observation of Surface Amorphization in Anatase Nanocrystals During Light Irradiation in Water Vapor” Nano Letters, 13, 679-684.

B. K. Miller* and P. A. Crozier* (2013). “A System for In Situ UV-Visible Illumination of ETEM Samples” Microscopy and Microanalysis, 19, 461-469.

M. A. L. CordeiroP. A. Crozier, E. R. Leite (2012). “Anisotropic Nanocrystal Dissolution Observation by In situ Transmission Electron Microscopy” Nano Letters, 12, 5708-5713.

S. Chenna and P. A. Crozier*, (2012). “Operando TEM: A new technique for detection of catalysis using electron energy-loss spectroscopy in transmission electron microscope” ACS Catalysis, 2,2395-2402.

S. Chenna and P. A. Crozier*, (2012). “In Situ Environmental Transmission Electron Microscopy to Determine Transformation Pathways in Supported Ni Nanoparticles”  Micron, 43, 1188-1194.

L.G. Jacobsohn, R. WangP.A. Crozier, B. L. Bennett, R. E. Muenchausen, (2012). “Electron energy-loss spectroscopy investigation of dopant homogeneity in Tb-doped Y2O3 nanoparticles prepared by solution combustion synthesis.” Optical Materials 34(4): 671-674.

J.T. Zhu, J. C. Jia, F. L. Kwong, D. H. L Ng, P. A. Crozier, (2012). “Metal-free synthesis of carbon nanotubes filled with calcium silicate.” Carbon 50(7): 2666-2669.

R. Banerjee, and P. A. Crozier*, (2012). “In Situ Synthesis and Nanoscale Evolution of Model Supported Metal Catalysts: Ni on Silica.” Journal of Physical Chemistry C, 116, 11486-11495.

P.P. Dholabhai, S. Anwar, J. B.Adams, P. A.Crozier, R. Sharma (2012) “Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach.” Modelling and Simulation in Materials Science and Engineering 20(1): 13.

Q. L. Zhang, F. Y. Meng, P.A. Crozier, N. Newman and S. Mahajan (2011), “Effects of Stress on Phase Separation in InxGa1-xN/GaN Multiple Quantum-Wells”, Acta Materialia 59(10): 3759-3769.

P.P. Dholabhai, J. B.Adams, P. A. Crozier, R. Sharma, (2011) “In search of enhanced electrolyte materials: a case study of doubly doped ceria”, Journal of Materials Chemistry, 21(47): 18991-18997.

P.P. Dholabhai, S. Anwar, J. B.Adams, P. A. Crozier, R. Sharma, (2011) “Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: Applications to materials design ”, Journal of Solid State Chemistry 184(4): 811-817.

E. Bailey, N. M. T. Ray,  A. L. Hector, P.A. Crozier, W. T. Petuskey, P. F. McMillan, (2011) “Mechanical Properties of Titanium Nitride Nanocomposites Produced by Chemical Precursor Synthesis Followed by High-P,T Treatment ”, Materials 4(10): 1747-1762.

L. G. Jacobsohn, S. C. Tornga, M. W. Blair, B. L. Bennett, R. E. Muenchausen, R. WangP. A. Crozier, D. W. Cooke, (2011) “Synthesis, structure, and scintillation of Ce-doped gadolinium oxyorthosilicate nanoparticles prepared by solution combustion synthesis ”, Journal of Applied Physics 110(8): 083515(1-7).

V. SharmaP.A. Crozier*, R. Sharma and J.B. Adams, (2012) “Direct Observation of Hydrogen Spillover in Ni-Loaded Pr-Doped Ceria”, Catalysis Today 180(2) 2-8.

S. Chenna, R. Banerjee, P.A. Crozier*, (2011) “Atomic Scale Observation of the Ni Activation Process for Partial Oxidation of Methane Using In-Situ Environmental TEM”, ChemCatChem  3(6): 1051-1059.

S. JanbroersP.A. Crozier, H.W. Zandbergen, and P.J. Kooyman, (2011)  “A model study on the carburization process of iron-based Fischer-Tropsch catalysts using in situ TEM-EELS”, Applied Catalysis B-Environmental 102 (3-4): p. 521-527.

P.P. Dholabhai, J. Adams, P.A. Crozier and R. Sharma, (2011) “First-principles Study of Defect Migration in RE-doped Ceria (RE = Pr, Gd)”, MRS Online Proceedings Library, 1311, mrsf10-1311-gg05-08 doi:10.1557/opl.2011158.

P.A. Crozier* and S. Chenna, (2011) “In Situ Analysis of Gas Composition by Electron Energy-Loss Spectroscopy for Environmental Transmission Electron Microscopy”, Ultramicroscopy, 111 177-185.

R. WangP. A. Crozier*, R. Sharma(2010) “Nanoscale Compositional and Structural Evolution in Ceria Zirconia during Cyclic Redox Treatments”, Journal of Materials Chemistry, 20 7497-7505.

P.P. Dholabhai, J.B. Adams, P.A. Crozier, R. Sharma, (2010) “A Density Functional Study of Defect Migration in Gadolinium Doped Ceria”, Phys. Chem. Chem. Phys., 12 7904-7910.

P.P. Dholabhai, J.B. Adams, P. A. Crozier, R. Sharma, (2010) “Oxygen Vacancy Migration in Ceria and Pr-Doped Ceria: A DFT plus U Study”, Journal of Chemical Physics, 132 8.

V. Sharma, K.M. Eberhardt, R. Sharma, J.B. Adams, P.A. Crozier, (2010)  “A Spray Drying System for Synthesis of Rare-Earth Doped Cerium Oxide Nanoparticles”, Chemical Physics Letters, 495 280-286.

R. Wang, P. A. Crozier*, and R. Sharma, (2009). “Structural Transformation in Ceria Nanoparticles during Redox Processes.” Journal of Physical Chemistry C, 113(14): 5700-5704.

Li, J. Liu, N. Nag, and P.A. Crozier*, (2009). “In situ preparation of Ni-Cu/TiO2 bimetallic catalysts.” Journal of Catalysis, 262(1): 73-82.

W.F. van Dorp, C. W. Hagen, P. A. Crozier, and P.Kruit, (2008). “Growth behavior near the ultimate resolution of nanometer-scale focused electron beam-induced deposition.” Nanotechnology, 19(22): 9.

C.W.Hagen, W. F. van DorpP.A. Crozier, and P. Kruit, (2008). “Electronic Pathways in Nanostructure Fabrication.” Surface Science, 602: 3212-3219.

P. A. Crozier*, R. Wang, and R. Sharma, (2008), “In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes” Ultramicroscopy, 108 1432-1440.

D.T.L. Alexander, P. A. Crozier*, and J. Anderson (2008) Brown Carbon Spheres in East Asian Outflow and their Optical Properties” Science, 321 833.

R. WangP. A. Crozier*, R. Sharma, and J. B. Adams (2008), “Measuring the Redox Activity of Individual Catalytic Nanoparticles in Cerium-Based Oxides” Nanoletters (Impact Factor 13.5), 8(3), 962.

P. A. Crozier*, (2008) Proximity Effects in Nanoscale Patterning with High Resolution Electron Beam Deposition”, J. Vac. Sci., 26(1) 249-254.

W.F. van Dorp, C.W. Hagen, P.A. Crozier and P. Kruit, (2007) “In Situ Monitoring and Control of Material Growth for High Resolution Electron Beam Induced Deposition”,  J. Vac. Sci. & Tech. B,  25(6), 2210-2214.

P. A. Crozier*, (2007) Nanoscale Oxide Patterning with Electron-Solid-Gas Reactions”, Nano Letters, 7(8) 2395-2398.

R. Roucka, Yu-Jin An, A. V.G. Chizmeshya, J. Tolle, V. R. D’Costa, J. Menéndez, P. A. Crozier and J. Kouvetakis (2006), Epitaxial semi-metallic HfxZr1-xB2 templates for optoelectronic integration on Silicon “, Appl. Phys. Lett., 89 (24): Art. No. 242110.

R. WangP. A. Crozier*, R. Sharma, and J. B. Adams (2006), Nanoscale Heterogeneity in Ceria Zirconia with Low Temperature Redox Activity “, J. Chem. Phys. B, 110 (37): 18278-18285.

P. Li, J. Liu, N. Nag, and P. A. Crozier* (2006) “In Situ Synthesis and Characterization of Ru Promoted Co/Al2O3 Fischer-Tropsch Catalysts”, Appl. Catal. A, 307 (2), 212-221.

W.F. van Dorp, C.W. Hagen, P.A. Crozier, B. van Someren, and P. Kruit (2006), “One nanometer structure fabrication using electron beam induced deposition”,  Microelectronic Engineering, 83 (4-9), 1468-1470.

S. Ketharanathan, R. Sharma, P.A. Crozier and J.S. Drucker (2006) “Electron Beam Induced Deposition of Pure Nanoscale Ge”, J. Vac. Sci. & Tech. B, 24(2), 678-681.

W.F. van Dorp, B. Someren, C.W. Hagen, P. Kruit, and P.A. Crozier, (2006) “Diffraction Patterns of Artificial Two-Dimensional Crystals Synthesized In Situ in an Environmental Scanning Transmission Electron Microscope”, J. Microscopy, 221, 159-163.

W.F. van Dorp, B. Someren, C.W. Hagen, P. Kruit, and P.A. Crozier, (2006) “Statistical Variation Analysis of Sub-5 Nanometer Sized Electron Beam Induced Deposits”,  J. Vac. Sci. & Tech. B,  24(2), 618-622.

R.F. Egerton, F. Wang and P. A. Crozier (2006) “Beam Induced Damage to Thin Specimens in an Intense Electron Probe”, Microscopy and Microanalysis, 12(1), 65-71.

J.C. Thorp, K. Sieradzki, L. Tang, P. A. Crozier, A. Misra, M. Nastasi, D. Mitlin and T. Picraux, (2006) “Formation of Nanoporous Noble Metal Thin Films by Electrochemical Dealloying of PtxSi(1-x)” Applied Physics Letters, 88 (3): Art. No. 033110.

P. Li, J. Liu, N. Nag, and P. A. Crozier* (2006) “Dynamic Nucleation and Growth of Ni Nanoparticles on High Surface Area Titania”, Surf. Sci., 600, 693.

Book Chapters

R. Sharma and P.A. Crozier,  “Environmental Transmission Electron Microscopy in Nanotechnology”, in Handbook of Microscopy for Nanotechnology (Editors: N. Yao and Z.L. Wang), Kluwer Academic Publishers, New York, 2005, p.531-563.

P.A. Crozier and C.W. Hagen, “High Resolution Electron Beam Induced Deposition and Processing”, in Nanofabrication: Fundamentals and Applications(Editors: A.A. Tseng  and Dr. Walter J. Trybula), World Scientific, 2008, p.377-399.

P.A. Crozier, “Nanocharacterization of Heterogeneous Catalysts by Ex Situ and In Situ STEM”, in Scanning Transmission Electron Microscopy: Imaging and Analysis (Editors: S. Pennycook and P. Nellist.), Springer, New York, 2011, 537-582.

P.A. Crozier and B. K. Miller, (2015), “Spectroscopy of Solids, Gases and Liquids in the ETEM” in Controlled Atmosphere Transmission Electron Microscopy (Eds. T. W. Hansen and J. B. Wagner), New York, Springer.

Candace K. Chan, Tuysuz Harun, Artur Braun, Chinmoy Ranjan, Fabio La Mantia, Benjamin K. Miller,  Liuxian ZhangP.A. Crozier, Joel A. Haber, John M. Gregoire, Hyun S. Park, Adam S. Batchellor, Lena Trotochaud, and Shannon W. Boettcher, (2015). “Advanced and In Situ Analytical Methods for Solar Fuel Materials”, in Topics in Current Chemistry: Solar Energy for Fuels. Switzerland, Springer International Publishing